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Abstract. The most general time-dependent Hamiltonan for a harmome oscillator 15 both
linear and quadratic in the coordinate and .ae cancnical momentum It deseribes in general
a harmome osciilator with a nme-dependent mass, a time-dependent friction (or antifriction)
‘constant’, and a time-dependent spring “constant’, acted upon by a ime-dependent force
The energy, whose time denivative 1s the power, 15 1n general different from the Hamultoman.
The generalized Berry phase for a given energy ergenstate has a state-dependent pari, which
vamshes if there 1s no dampumng, and an arbitrary state-tndependent part If the Hamiltonar
15 1dentified as the energy, both the enetgy eigenvaiues and the generahzed Berry phase
are different In the adiabatic hmut both approaches give the saw.e total phase, which 1s
the sum of the dynamical and Berry phases

1. Introduction

The Berry phase [1] for a time-dependent generalized harmonic osciilator Hamiftonian,
which has a cross term ( pg) between the generalized coordinate ¢ and the canonical
momentum p, has been obtained by a number of authors [2-6]. Jackiw [7] and Gerbert
8] showed that there is an ambiguity in the Berry phase because it is not invariant
under unitary transformations. The Berry phase could even be removed by a suitable
unitary transformation [9] In a previous paper [10], the Berry phase was generalized
so that it is invariant under unitary transformations [11] This generalized Berry phase
is also applicable to systems which are meither adiabatic nor cyclic. It therefore
generalizes the phase of Aharonov and Anandan [12, 13}, who define a gauge-invariant
phase which is applicable to non-adiabatic processes. When applied to the generalized
harmonic oscillator Hamiltonian, the generalized Berry phase is zero [10]. Ths
behaviour can be understood since the generalized harmonic oscillator can be reduced
by a gauge transformation to the standard Hamiltonian (with no cress term) for a
simple harmomec oscillator with time-dependent mass and spring ‘constant’. The gen-
eralized Berry phase for the standard Hamiltonian of a simple harmonic oscillator is
known to be zero, and is invarnant under gauge or unitary transformations.

In a recent paper, Engineer [14] further generalized the generalized harmonic
osciflator Hamiltonian by adding a term proportional to the coordinate. He obtains a
state-independent Berry phase, which he calls a ‘parameter space analogue of the
Aharonov-Bohm [15] effect’. For this Berry phase the physical space is topologically
trivial, whereas the Aharonov-Bohm effect requires a non-trivial topology [16). The
state-independent Berry phase obtained by Engineer [14], using Berry’s non-invariant
formula [1], can be eliminated by a gauge transformation [17, 18] and is therefore
unobservable,
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In this paper 1 consider the most general time-dependent harmonic oscillator
Hamiltonian [19], which is both linear and quadratic in the coordinate and canonical
momentum. In general the system described by this Hamiltonian is a harmonic oscillator
with a time-dependent mass, a time-dependent spring ‘constant’, and a time-dependent
friction {or antifriction) ‘constant’ that is acted upon by a time-dependent force This
paper includes both a time-dependent mass and time-dependent damping (or antidamp-
ing) in a Hamiltonian formuiation [20-24].

The interpretation of the Kanai Hamiltonian [21] as describing damping in quantum
mechanics has been criticized [23] because of the apparent violation of the uncertainty
principle. The uncertainty principle in terms of the canonical momentum 1s always
satisfied, but in terms of the kinetic (or mechanical) momentum it is not in general
satisfied. In this paper the friction ‘constant’ is generalized to be time-dependent and
can be either positive, corresponding to dampmng, or negative, corresponding to
antidamping. The environment can supply energy to a quantum particle as weli as
remove energy [24]. The phenomenological friction ‘constant’ can consequently be
chosen so that the uncertainty principle in terms of the kinetic momentum is always
satisfied.

The concept of a time-dependent mass in quantum mechanics may seem artificial,
since the rest mass of particles is constant. Nevertheless, the effective mass of an
electron in a solid can be time dependent if time-dependent external forces are applied
to the solid so that the lattice constants change in time. Other examples of a time-
dependent mass in quantum mechanics have been considered [25-27].

The energy of a time-dependent system is not necessarily the Hamiltonian [22, 28,
29]. The Hamiltonian determines the time development of the system, classically
through Hamilton’s equations and quantum mechanically through the Schridinger
equation. These equations are form invariant under gauge transformations, which
implies that the Hamiltonian is gauge dependent. On the other hand, the energy, which
is gauge invariant, has the property that its total time derivative is equal to the power
transferred between the system and the environment. Because of damping, the kinetic
{or mechanical) momentum is not equal to the canonical momentum. Likewise, the
energy, which is the sum of the kinetic energy plus the conservative potential energy,
is not equal to the Hamiltonian,

When a system is canonically quantized we can calculate the generalized Berry
phase [10], which is invariant under unitary transformations and applicable to systems
neither adiabatic nor cyclic. For the most general harmonic oscillator the generalized
Berry phase has a state-dependent part, which vanishes if there is no damping (or
antidamping), and an arbitrary state-independent part. The solution to the energy
eigenvalue problem gives the eigenenergies, from which the dynamical phase is
obtained. In the adiabatic limit the total phase is the dynamical phase plus the
generalized Berry phase. The arbitrary state-independent part of the Berry phase is
chosen such that the total phase has no state-independent part.

When the most general harmonic oscillator Hamiltonian is identified (incorrectly)
as the energy, both the generalized Berry phase and the dynamical phase are different
from those calculated from the energy operator. The Hamiltonian in this case is not
the energy, because its time derivative is not the power. Nevertheless, in the adiabatic
limit the rotal phase is the same as when the correct energy operator is used, which
is an example of a general theorem {10}. However, since both the dynamical phase
and the Berry phase are measurable, it makes a difference whether eigenstates of the
energy operator or the Hamiltonian are used. The energy operator gives both the
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correct dynamical phase and the generalized Berry phase. The energy spectrum can
be determined by spectroscopy and hence the dynamical phase can be calculated. The
relative total phase can be measured by an interference experiment, so the generalized
Berry phase can be obtained by subtraction of the dynamical phase.

In section 2 the most general Hamiltonian for the harmonic oscillator is used to
obtan the classical equation of motion and the energy of the oscillator. In section 3
the generalized Berry phase is shown to have both a state-dependent part and an
arbitrary state-independent part In section 4 the Hamiltonian is assumed to be the
energy, which results in a generalized Berry phase with a different state-dependent
part. The energies and total phases obtained in sections 3 and 4 are compared in
section 5, along with a discussion of the uncertainty principle The conclusion is given
i section 6.

2. Classical most general time-dependent harmonic oscillator

2.1. Hamiltoman and equations of motion

The most general time-dependent Hamiltonian for the harmonic oseillator is both
tinear and quadratic in the generalized coordinate g and conjugate canonical momen-
fum p:

H=1Yap"+2bpg+cg”)+fg+gp+h 2.1}

where the coefficients a, b, ¢, f, g and h are all time dependent (but not necessanly
adiabatically varying in time) The classical equation of motion 1s obtained from
Hamilton’s equations:

q=dH/dp=ap+bgtg 2.2)
and
p=—-0H/dg=—-bg—cg-f. (2.3)

In order to obtain the classical equation of motion, it 1s necessary to know the,
possibly time-dependent, mass m(t} of the oscillator and the positive or negative
time-dependent friction ‘constant’ y(t), Since the Hamiltonian in equation (2.1) does
not give this physical information, which must be known a priori, the Hamiltonian
alone does not completely determine the physical situation. The function a(¢) is related
to the mass m(¢) and frictton ‘constant’ ¥(?) by

a '=m(O0() {2.4)

where the function I'(t) is defined as

F(r)=exp(J' dr'y(t‘}/m{t‘)). {2.5)
0

The function ¥(t) describes friction when it is positive and antifriction when it is
negative, and henceforth will be referred to as the ‘friction constant’.

When equation (2.4) is used in equations (2.2) and (2.3} and the canonical
momentum p is elimnated, the classical equation of motion 15

d(mg)/dt=—y4—kq+F (2.6)
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where the time-dependent spring ‘constant’ 1s

kity=T"[c—b'fa—d(b/a)/d1] (2.7
and the time-dependent force F(¢} is
F(1y=C""[d(g/a)/dt+gb/a~f] (2.8)

The physical system described by the Hamiltonian in equation (2.1) is thus in general
a time-dependent mass m({) on a spring with a time-dependent spring ‘constant’ k(1)
acted upon by a velocity-dependent force with a time-dependent friction “constant’
v(t) and a time-dependent force F(¢). Previously, cases where (i) the mass is constant
and y>0 [21], and (1i) the mass 1s time dependent and y=0 [25, 30] have been
considered, The general case has both a time-dependent mass and a ime-dependent
friction ‘constant’

2.2. Energy
The energy & for the harmonic oscitlator described by equation (2 6) is
€=img +ikg’— Fyq (29)

where F is the average of the time-dependent force F(1) acting ¢i: the particle,

r

I:“=T"I dr F{1) {(210)
o

as T—oc, The time rate of change of this energy is the power P transferred between

the system and the environment:

dg/di=P=(img*+ g’ ) +(—mg)¢+(—yj)q+AFg (211)

where the time-dependent non-conservative force 1s AF = F(t) — F. On the right-hand
side of eguation (2.11), the first term is the power iransferred due to the change 1n
timte of the mass at constant velocity, the second term is due to the change in time of
the spring ‘constant’ at constant displacement, the third term is due to the “fictitious
force’ —mg, which is taken from the lefi-hand side of equation (2 6), the fourth term
is the power loss (or gain) due io the friction (or antifriction} force, and the last term
is the power transferred by the time-dependent non-conservative force AF. Therefore,
each term in equation (2.11) has a physical interpretation.

When equation (2.2) for the velocity is substituted into equation (2.9) for the energy,
and equation (2.4) is used, we obtain

€E=02mI?) "(p+bgratg/ay +5kiq—q0) —ikqs (2.12)

where go(t) = Fikisa parametier obtained by completing the square 1n equation (2.9).
The energy in equation (2.12) is now expressed in terms of the canonical momentum
and is in a form suitable for canonical quantization.

3. Generalized Berry phase

31 Energy eigenvalue problem

The system discussed in section 2 can be canonically quantized by replacing the
canonical momentum p by the canonical momentum operator p = —i3/a4, where natural
units such that # =1 are used.
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For the energy in equation (2.12) the energy operator eigenvalue problem is

&, = £,0, 3y

where 4, is the energy eigenstate and £, 15 the energy eigenvalue We can solve equation
{3.1) by making a gauge transformation {17] with a gauge function

Alg, 1) =(b/2a)q* +(g/a)q+r(t) (3.2)
where r(r) 1s an arbitrary function of time. Then the new energy operator &’ is

&' =exp(iA) € exp(—1A) = (2mI?) ' p?+ikig — g,)* — Lkql. (3.3
The new eigenstate «,, corresponding to the new energy operator in equation (3.3) is

U= expliA), = dn(g — go). (3.4)

The function ¢.(g) is the real energy ergenstate of the simple harm

scill
whose energy operator is equation (3.3) with g,=0 The eigenenergy £, in equation
{3.1) is unchanged under a gauge transformation, and 15

£n=(n+3)ew—1kqi (3.5)

=
[
=3
=]
]

ple harmonic os

where the angular frequency « is
w = (k/mIl*)'"? {3.6)
and n=0,1,2,3,....

3.2, Generalized geometrical phase

The geometrical phase in quantum mechanics discovered by Berry [1] has been
generalized to be invariant under unitary transformations and 1s not limited to adiabatic
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{17} phase) is [10]

Yo () = (ol (i0/ 3¢ — H + &)y,) (3.7
Under a gauge transformr.ation, equation (3.7) is invariant:
¥ul8) =(u(ia/ot — H'+ E)pr) (3.8)

where the gauge-transformed energy operator and energy cigenstate are defined
equations (3.3) and (3.4), respectively. The gauge-transformed Hamiltonian H' is

H'=exp(iA)H exp{—1A) —5A /ot {3.9)
which is required for the time-dependent Schrédinger equation to be form invariant
[17,18].

When equations (2.1) and (3.2) are used 1n equation (3.9), we obtain
H'=(2ml) 'p+iTkg’ ~-TFg+h {3.10)

where hy(7) = k —g’/2a —r is a function of time only. The time derivative of the Berry
phase in equation {3.8) can be written as

Fal8) = (@i(i0/a0) ) — (U H 'Yy + e = (n+)e(1-T)+ h(r)  (3.11)

where by = hy~ T Fgy+ ékq_f',([‘ —1) is an arbitrary function of time because r(¢) in A is
arbitrary The term (..}, where the overdot denotes the partial time derivative,
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vamshes because 1t is both real, from equation (3.4), and imaginary, from the normaliz-
ation condition {{/,[¢r.) = 1. The generalized Berry phase in equation (3 11) therefore
has a state-dependent pari, which vanishes if there is no damping (I'=1), and an
arbitrary state-independent part A, The state-independent part of the generalized Berry
phase is chosen such that the total phase has no state-independent part. it has no
physical significance because it can be removed by a time-dependent gauge transfor-
mation.

3.3. Total phase

In the adiabatic limit the total phase 8 of the eigenstate ¢, is the sum of the dynamcal
phase and the generalized Berry phase

0(:)=—j de’ e, (1"} + v, (1). (3.12)
0
When equations (3.5) and (3.11) are substituted into equation (3.12), we obtain
0{t)=—(n+3) I dt’ w(Y(). (3.13}
0

The arbitrary function r(¢) is chosen such that h,+1kgi=0, so that the total phase
does not have any state-independent contribution. If there 15 no damping (I'=1),
equation (3.13) gives the dynamical phase.

4. Hamiltoniap as the energy

4.1. Harltonian

If we assume that the Hamiltoman in equation (2.1) is the energy of the particle, we
obtain a non-zero generalized Berry phase different from section 3. The Hamiltonian
in equation (2.1} can be rewritten as

H=2=(2mI) (p+bg/a+g/ay +iTk(q—G§o) +ho (4.1)

where h,=h —g2/2a—%l‘l€6§-is a function of time only and §o=F/k The time-
dependent ‘spring constant’ k is

k=I"c-b"a) (4.2)
and

F=I"(gb/a-f). (4.3)
The eigenvalue problem for € is

&, = £ (4.4)

where §, is the eigenstate and &, is the eigenvalue. Equation {4.4) can be immediately
solved if we make a gauge transformation with the gauge function

Alg, 1)=(b/2a)g>+(g/a)g+F(1) (4.5)
where F is an arbitrary function of time. Then the new operator £’ is

&' =exp(iA) € exp(~iA) = (2mI) 'p?+ Tk(q - Go)* + ho. (4.6}



Berry phase for the most general harmonic oscillator 2769

The new eigenstate u';:, of the new operator in equation (4.6) 15
= expliA)d, = $.(g — do). (4.7)

The function e;E,.(q) 1s the real eigenstate to the simple harmonic oscillater with §,=0
in the Hamiltonian in equation (4 6). The eigenvalue in equation (4 4) 1s

£, =(n+1)é + k(1) (4.8)
where the angular frequency @ is
&=(k/m)"? (4.9)

and n=0,1,2,3,

4.2. Generahzed geometnical phase
The time derivative of the generalized Berry phase is {10]

k) = () (3/01 — H + &) o). (4.10)
Since the energy operator is equal to the Hamiltonian in this case, equation (4 10)
reduces to

AQEICACLVERTASITAEIED A (4.11)

with the use of equation (4.7). The last term on the right-hand side of equation (4.11)
is zero, because it is oth real, from equation (4.7), and imaginary from the rormaliz-
ation condition. If equation {4.5) for the gauge function is substituted into equation
(4.11), we obtain

Ya(t)=3[d(b/@)/dt](a/G)(n+3)+F+ o d(g/a)/dr (4.12)

which has a state-dependent part and an arbitrary state-independent part. The state-
dependent pait of the generalized Berry phase in equation (4 12) is different from the
state-dependent part of the generalized Berry phase in equation (3.11).

4.3. Total phase

In the adiabatic limit the total phase @ of the eigenstate i, is the sum of the dynamical
phase and the generalized Berry phase:

e
163 =—J ar’ &£,(1)+ 3.{1). (4.13)
0
When equations (4.8) and (4.12) are substituted into equation {4.13), we obtain
r
f()=—(n+1) j dra(ry-Ha/&) d(b/a)/dr']. {4.14)
1]

The arbitrary function F is chosen to be #= ho— o d(g/ a)/ds, so that equation (4.14)
has no state-independent contribution.

5. Discussion

In this section a comparison of the energies and total phases in sec;‘ons 3 and 4 is

adas Tha nnpartainty nﬂnmnlp ig alen digcnssed
magae, ing unceriainty principic 15 alsg CIsCuUsseC,
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5.1. Energy

The time denvative of the energy & in equation (2.9) is the power in equation (2 11}
transferred between the system and its environment. Each term tn equation (2.11) has
a physical significance

On the other hand, if the ‘energy’ 1s chosen to be the Hamiltonian H in equation
(2.1}, then the time denvative of € in equation {4.1) 1s

d€/dt=dH/dt=aH/3t=1(dp"+2bpg+éq’)+ fg+gp+h (5.1)

from Hanulton's equations (2.2) and (2.3). If the canonical momentum p is eliminated
from equation (5.1) in terms of the velocity 4 using equation (2 2}, we obtain

d#/dt=—Yd(mDV/delg’ +{d(TK)/drlg’ - [d(T F)/drlg+[d(b/a)/dt]qq
~[d(g/a)/dt]g+d(h—g’/2a)/d¢ (52)

The six terms on the right-band side of equation (5.2) cannot be interpreted physically
as power, in contrast to the five terms on the right-hand side of equation (2.11). We
can thus conclude that € in eguation {4.1} is not the energy of the system, but £ in
equation (2.9} is.

The difference between the energy € in equation (2.9) and '€ in equation
41 is

g-T'€=3k—k)g - (F-F)g-T"'(h—g’/2a) (5.3)

In general, the nght-hand side of equztion (5.3) does not vanish and £ is not the energy.

5.2. Total phase

The total phases in the adiabatic limit for the two cases considered are given in
equations (3.13) and (4.14}. In the adiabatic limnit we now show that these two phases
are equal.

The phase #{t) in equation (3.13) can be written as

M) =—(n+d) j'd:'[aha d(b/a)/de']V? (5.4)
L]

from equations (3.6), (2.4), (2.7), (4.2} and (4.9). In the adiabatic limit, the derivative
in equation (5 4) is small, and we can expand the square root, which gives

6(1)=—(n+3) I drla(e)~xa/é) d(b/a)/dr' +. . }. (5.5)

If the expansion is terminated after the second term, equation (5.5) agrees with (4.14),
—_ T

so the two phases are equal: 8(:)=8(s). This 'fu:uav:uul is an example of a penera

theorem [10].

Even though the total phases in sections 3 and 4 are the same in the adiabatic limit,
the dynamical and Berry phases are different. The energies of a system can be
determined from spectroscopic measurements, and the dynamical phase can be calcu-
lated. The dynamical phase in section 3 is correct, because the correct energy operatar
is used. An interference experiment would measure the total relative phase. The Berry
phase can be obtained by subtracting the dynamical phase from the total phase. Because
the correct energy is used, the Berry phase obtained in section 3 is correct.
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5.3, Uncertamty principle
For a system which is canonically quantized, the uncertainty principle is
ApAg=h/2 (5.6}

in terms of the uncertainties in the canonical momentum Ap = ((p—{(p}}"* and the
coordinate Ag ={(q—{g»*""". For the damped harmonic oscillator, the uncertainty
principle in terms of the kinetic momentum mv = mg from equation (2 2) is

AmvAg=(h/2) exp(—J. dr’ ‘y(t'}/m(t')) (5.7)
o

where equations (2.4} and (2.3} have been used.

The Kanai Hamultonian {21], for which y/m >0 is a constant in equation (5.7),
has been criticized [23] for allegedly violating the uncertainty principte. However, the
uncertainiy principle in terms of the canonical momentum p in equation (5.6) 15 always
satisfied. Nevertheless, some workers [23] believe on physical grounds that the uncer-
tainty principle should also be satisfied in terms of the kinetic momentum. When
y/m >0, the right-hand side of equation (5.7) goes to zero as the time goes to infinity.
This behaviour is due to the model considered, in which the quantum harmonic
oscillator is coupled to a reservoir which always removes energy, including the zero
point energy as equations (3.5} and (3.6) show. The quantum harmonic oscillator
behaves more classically as the time increases.

In the model considered here the ‘constant” v(f) depends, in general, on time, It
can be positive, corresponding to friction, or negative, corresponding to antifriction.
If the integral in equation {5.7) satisfies

I dt’ y(£')/m(t)=0 (5.8)
1]

for afl times ¢, the right-hand side of equation (5.7) is always greater than or equal to
#/2, and hence the uncertainty principle in terms of the kinetic momentum Amvig =
#/2 is always satisfied. The harmonic oscillator with the condition in equation (5 8)
gives a phenomenological description of a quantum oscillator which is coupled to a
quantum system of many degrees of freedom [24] which can supply energy to the
particle as well as remove energy from it. When the reservoir is removing energy from
the particle y >0 and when the reservoir is supplying energy to the particle y << 0. The
model given here does not determine y(¢) but merely treats it as a phenomenological
function. This approach is a natural generalization of Kanai's Hamiltonian, which
removes a major objection [23].

6. Conclusion

The most general time-dependent Hamiltonian for the harmonic oscillator is both
linear and quadratic in the coordinate and canonical momentum. [t describes a
harmonic oscillator with a time-dependent mass, a time-dependent friction (or antifric-
tion) ‘constant’, and a time-dependent spring ‘constant’, which is acted wpon by a
time-dependent force, The time-dependent mass and the time-dependent friction con-
stant must be given to determine the physical system, since the Hamiltonian alone
does not do it. The energy, defined such that its time derivative is equal 1o the power
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transferred between the system and the environment, is not in general equal to the
Hamiitonian.

When the system is canonically quantized, its generalized Berry phase, caicuiated
for eigenstates of the energy operator, consists of a state-dependent part and an arbitrary
state-independent part. The state-independent part is chosen to cancel the state-
independent part of the dynamical phase in the adiabatic limit. The state-independent
part of the Berry phase is equivalent to a time-dependent gauge function, so it has no
observable consequences, contrary to a recent claim [14]. The state-dependent part of
the Berry phase contributes only if the system has frictional forces.

If the Hamiltonian is identified (incorrectly) as the energy, the generalized Berry
.phase has a different state-dependent part and an arbitrary state-independent part.
The state-independent part of the Berry phase can also be chosen to cancel the
state-independent part of the dynamicai phase. In the adiabatic limit the total phases
obtained from the two choices of energy are the same [ 10]. Nevertheless, the dyaamical

mhnocar and tha Rarrir mihacar ars diffarant Qinca tha anaravy ran he mancorad  tha
Pllﬂasa Gl Hiw ﬂbll: Pllﬂﬂ\tﬂ Rl VIlIWEWIELe AFELEWR LLEN \’ll\llsy WCLEE W AW OO LR WA, LR

dynamical phase can be calculated. It is therefore essential to use the correct energy
operator for the problem.
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