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Abstract. The most general time-dependent Hamillonm for a harmonlc o ~ ~ d l a t o ~  I B  both 
linear and quadratic ~n the coordinate and canonical momentum I t  desenbes in general 
aharmonieoscillatorwith a time-dependent mars, atime-depeldent frnnton (oranttnctmn) 
'con8tant'. and a time-dependent spnng 'constant', acted upon by a 1n"dependent force 
The energy, whore time denvative IS the power, 15 m general different from the Hamtltoncan. 
The generalized Berry phase for a given energy exgenstate has anate-dependent pa*, whtcb 
vanishes If there IS no dampmg, and an arbitrary state-mdependent part If the Hamiltoncan 
IS identified as the energy, bath the energy  eigenvalue^ and the generalized Berry phase 
are different In the adiabatic limit both approaches gwe the sa7.e total phase, whmh IS 

the rum of the dynamical and Berry phase; 

1. Introduction 

The Berry phase [I] for a time-dependent generalized harmonic oscillator Hamiltonian, 
which has a cross term ( p q )  between the generalized coordinate q and the canonical 
momentum p. has been obtained by a number of authors [2-61. Jackiw [7] and Gerbert 
[8 ]  showed that there is an ambiguity in the Berry phase because it is not invariant 
under unitary transformations. The Berry phase could even be removed by a suitable 
unitary transformation [9] In a previous paper [IO], the Berry phase was generalized 
so that it is invariant under unitary transformations [ I l l  This generalized Berry phase 
is also applicable to systems which are neither adiabatic nor cyclic. It therefore 
generalizes the phase of Aharonov and Anandan [12,13], who define a gauge-invariant 
phase which is applicable to non-adiabatic processes. When applied to the generalized 
harmonic oscillator Hamiltonian, the generalized Berry phase is zero [IO]. This 
behaviour can be understood since the generalized harmonic oscillator can be reduced 
by a gauge transformation to the standard Hamiltonian (with no cross term) for a 
simple harmonic oscillator with time-dependent mass and spring 'constant'. The gen- 
eralized Berry phase for the standard Hamiltonian of a simple harmonic oscillator is 
known to be zero, and is invariant under gauge or unitary transformations. 

In a recent paper, Engineer 1141 further generalized the generalized harmonic 
oscillator Hamiltonian by adding a term proportional to the coordinate. He obtains a 
state-independent Berry phase, which he calls a 'parameter space analogue Of the 
Aharonov-Bohm [IS] effect'. For this Berry phase the physical space is topologically 
trivial, whereas the Aharonov-Bobm effect requires a non-trivial topology [161. The 
state-independent Berry phase obtained by Engineer [14], using Berry's non-invariant 
formula [I], can be eliminated by a gauge transformation [17,18] and is therefore 
unobservable. 

0305-4470191/122763+11SOO) SO 0 1991 IOP Publishing Ltd 2763 
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In this paper I consider the most general time-dependent harmonic oscillator 
Hamiltonian [19], which is both linear and quadratic in the coordinate and canonical 
momentum. In general the system described by this Hamiltonian is a harmonic oscillator 
with a time-dependent mass, a time-dependent spring ‘constant’, and a time-dependent 
friction (or antifriction) ‘constant. that is acted upon by a time-dependent force This 
paper includes both a time-dependent mass and time-dependent damping (or antidamp- 
ing) in a Hamiltonian formuiation [20-241. 

The interpretation of the Kanai Hamiltonian [21] as descnbing damping in quantum 
mechanics has been criticized [23] because of the apparent violation of the uncertainty 
principle. The uncertainty principle in terms of the canonical momentum is always 
satisfied, but in t e rm of the kinetic (or mechanical) momentum it is not in general 
satisfied. In this paper the friction ‘constant’ is generalized to be time-dependent and 
can be either positive, corresponding to damping, or negative, corresponding to 
antidamping. The environment can supply energy to a quantum particle as well as 
remove energy [24]. The phenomenological friction ‘constant’ can consequently be 
chosen so that the uncertainty principle in terms of the kinegic momentum is always 
satisfied. 

The concept of a time-dependent mass in quantum mechanics may seem artificial, 
since the rest mass of particles is constant. Nevertheless, the effective mass of an 
electron in a solid can be time dependent if time-dependent external forces are applied 
to the solid so that the lattice constants change in time. Other examples of a time- 
dependent mass in quantum mechanics have been considered [25-271. 

The energy of a time-dependent system is not necessarily the Hamiltonian [22,28, 
291. The Hamiltonian determines the time development of the system, classically 
through Hamilton’s equations and quantum mechanically through the Schrodinger 
equation. These equations are form invariant under gauge transformations, which 
implies that the Hamiltonian is gauge dependent. On the other hand, the energy, which 
is gauge invariant, has the property that its total time derivative is equal to the power 
transferred between the system and the environment. Because of damping, the kinetic 
(or mechanical) momentum is not equal to the canonical momentum. Likewise, the 
energy, which is the sum of the kinetic energy plus the conservative potential energy, 
is not equal to the Hamiltonian. 

When a system is canonically quantized we can calculate the generalized Berry 
phase [IO], which is invariant under unitary transformations and applicable to systems 
neither adiabatic nor cyclic. For the most general harmonic oscillator the generalized 
Berry phase has a state-dependent part, which vanishes if there is no damping (or 
antidamping), and an arbitrary state-independent part. The solution to the energy 
eigenvalue problem gives the eigenenergies, from which the dynamical phase is 
obtained. In the adiabatic limit the total phase is the dynamical phase plus the 
generalized Berry phase. The arbitrary state-independent part of the Berry phase is 
chosen such that the total phase has no state-independent part. 

When the most general harmonic oscillator Hamiltonian is identified (incorrectly) 
as the energy, both the generalized Berry phase and the dynamical phase are different 
from those calculated from the energy operator. The Hamiltonian in this case is not 
the energy, because its time derivative is not the power. Nevertheless, in the adiabatic 
limit the rofal phase is the same as when the correct energy operator is used, which 
is an example of a general theorem [IO]. However, since both the dynamical phase 
and tbe Berry phase are measurable, it makes a difference whether eigenstates of the 
energy operator or the Hamiltonian are used. The energy operator gives both the 
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correct dynamica! phase and the generalized Berry phase. The energy spectrum can 
be determined by spectroscopy and hence the dynamical phase can be calculated. The 
relative total phase can be measured by an interference experiment, so the generalired 
Berry phase can be obtained by subtraction of the dynamical phase. 

In section 2 the most general Hamiltonian for the harmonic oscillator is used to 
obtain the classical equation of motion and the energy of the oscillator. In section 3 
the generalized Serry phase is shown to have both a state-dependent part and an 
arbitrary state-independent part In section 4 the Hamiltonian is assumed to be the 
energy, which results in a generalized Berry phase with a different state-dependent 
part. The energies and total phases obtained in sections 3 and 4 are compared in 
section 5, along with a discussion of the uncertainty principle The conclusion is given 
in section 6. 

2. Classical most general time-dependent harmonic oscillator 

2.1. Hamiltonian and equations of morion 

The most general time-dependent Hamiltonian for the harmonic oscillator is both 
linear and quadratic in the generalized coordinate q and conjugate canonical momen- 
tum p: 

H = ;(ap2+2bpq + cq')+ f q + g p  + h (2.1) 

where the coefficients a, b, c, f; g and h are all time dependent (but not necessarily 
adiabatically varying in time) The classical equation of motion is obtained from 
Hamilton's equations: 

q = a H / a p  = op+ bq + g (2.2) 

and 

p = -aH/aq = -bo -cq- f :  (2.3) 

In order to obtain the classical equation of motion, it is necessary to know the, 
possibly time-dependent, mass m(t) of the oscillator and the positive or negative 
time-dependent friction 'constant' y ( t ) .  Since the Hamiltonian in equation (2.1) does 
not give this physical information, which must be known a priori, the Hamiltonian 
alone does not completely determine the physical situation. The function a (  1) is related 
to the mass m(t) and friction 'constant' y ( t )  by 

U - '  = m(t )r ( t )  (2.4) 

where the function r(t) is defined as 

(2.5) 

The function y ( t )  describes friction when it is positive and antifriction when it is 
negative, and henceforth will be referred to as the 'friction constant'. 

When equation (2.4) is used in equations (2.2) and (2.3) and the canonical 
momentum p is eliminated, the classical equation of motion is 

d ( m q ) / d r = - y q - k q + F  (2.6) 
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where the time-dependent spnng ‘constant‘ is 

k(r)=r-‘[c-b’/a -d(b/a)/dr] 

F ( t )  =T-’[d(g/a)/dr+gb/a -I]. 
and the time-dependent force F(1)  is 

(2.7) 

(2.8) 

The physical system described by the Hamiltonian in equation (2.1) is thus in general 
a time-dependent mass m(tl on a spring with a time-dependent spring ‘constant’ k ( r )  
acted upon by a velocity-dependent force with a time-dependent friction ‘constant’ 
y ( r )  and a time-dependent force F ( t ) .  Previously, cases where (i) the mass is constant 
and y > O  [21], and (ii) the mass is time dependent and y = O  [25,30] have been 
considered. The general case has both a time-dependent mass and a time-dependent 
friction ‘constant’ 

2.2. Energy 

The energy g for the harmonic oscillator described by equation (2 6 )  ir 

E = fmq2+fkq2- Fq 

F =  T-’ d t F ( t )  (2 10) 

(2 9) 
where F is the average of the time-dependent force F( t )  acting cli the particle, 

lor 
as T+m. The t i m  rate of change of this energy is the power P transferred between 
the system and the environment: 

(2 11) 

where the time-dependent non-conservative force is A F  = F ( t )  - i? On the right-hand 
side of equation (2.11), the first term is the power transferred due to the change in 
time of the mass at constant velocity, the second term is due to the change in time of 
the spring ‘constant’ at constant displacement, the third term is due to the ‘fictitious 
force’ -mq, which is taken from the left-hand side of equation (2 6), the fourth term 
is the power loss (or gain) due io the friction (or antifriction) force, and the last term 
is the power transferred by the time-dependent non-conservative force AF. Therefore, 
each term in equation (2.11) has a physical interpretation. 

When equation (2.2) for the velocity is substituted into equation (2.9) for the energy, 
and equation (2.4) is used, we obtain 

dZ/dr = P =  ($mq‘+fkq’) + (-mq)q + (- yq)q+ AFq 

5f = (2mr’)-’(p+ bq/a+g/a)’+fk(q -qo)*-$kqi (2.12) 

where qo(r)  = F / k  is a parameter obtained by completing the square in equation (2.9). 
The energy in equation (2.12) is now expressed in terms of the canonical momentum 
and is in a form suitable for canonical quantization. 

3. Generalized Berry phase 

3 1 Energy eigenvalue problem 

The system discussed in section 2 can he canonically quantized by replacing the 
canonical momentum p by the canonical momentum operator? = -iJ/Jq, where natural 
units such that h = 1 are used. 



Berry pharefor the most general harmonrc oscrllator 2767 

For the energy in equation (2.12) the energy operator eigenvalue problem is 

W" = E"*" (3 I )  
where & is the energy eigenstate and E. IS the energy eigenvalue We can solve equation 
(3 .1)  by making a gauge transformation [I71 with a gauge function 

A ( %  r ) = ( b / 2 a ) q ' + ( g l a ) q + r ( r i  (3.2) 

where r ( t )  is an arbitrary function of time. Then the new energy operator 8' is 

8 '=exp( iA)8  e x p ( - i , 2 ) = ( 2 m ~ 2 ) ~ ' p ' + ! k ( q - q , ) ' - f k q ~ .  (3.3) 

*b=exp(iA)*"=A(q-q,). (3.4) 

The new eigenstate corresponding to the new energy operator in equation (3 .3)  is 

The function + ; ( q )  is the rea! energy exgenstate of the simp!e hanonic osci!!a!or, 
whose energy operator is equation (3.3) with q o = O  The eigenenergy E. in equation 
(3 .1)  is unchanged under a gauge transformation, and is 

E. = ( n + f ) w  - fkqi  (3.5) 

where the angular frequency w is 

o = ( k / m r ' ) ' / '  (3.6) 

and n = 0 , 1 , 2 , 3 , .  . . . 

3.2. Geweralized geometrical phase 

The geometrical phase in quantum mechanics discovered by Berry [ l ]  has been 
generalized to be invariant under unitary transformations and is not limited to adiabatic 

[17] phase) is [ l o ]  
and cycilc processes [i(jj. denvafive of iiiis generaiized 8erv piiaje <Ur yang 

y,(r)=(*n,l(iJ/Jt-H+ O A J  (3.7) 

YJt)  =(*bl(iJ/Jr-H'+ 8Wb) (3.8) 

where the gauge-transformed energy operator and energy eigenstate are defined in 
equations (3 .3)  and (3.41, respectively. The gauge-transformed Hamiltonian H is 

Under a gauge transform'ation, equation (3.7) is Invariant: 

H'=exp(iA)H exp(-iA) -JA/Jl (3.9) 

which is required for the time-dependent Schrodinger equation to be form invariant 
[17, 181. 

When equations (2 .1 )  and (3.2) are used in equation (3.91, we obtain 

H'= ( 2 m r ) - ' p 2 + f r k q '  - r F q  + h, (3.10) 

where bo( r )  = h - g'/2a - r is a function of time only. The time derivative of the Berry 
phase in equation (3 .8)  can be written as 

(3.11) 

where h ,  = h,,-rFq,+:kqa(r- 1 )  is an arbitrary function of time because r ( l )  in ho is 
arbitrary The term (*:I*:,), where the overdot denotes the partial time derivative, 

Y J r )  =(Jlbl(iJ/Jt)*b)-(J161H'*b)+ E. = ( n + f ) o ( l  -r)+ h,(r )  
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vanishes because it is both real, from equation (3.41, and imaginary, from the normaliz- 
ation condition (@;l$b)= 1. The generalized Berry phase in equation (3 I I )  therefore 
has a state-dependent part, which vanishes if there is no damping (r= I) ,  and an 
arbitrary state-independent part h, The state-independent part of the generalized Berry 
phase is chosen such that the total phase has no state-independent part. It has no 
physical significance because it can he removed by a time-dependent gauge transfor- 
mation. 

3.3. Total phase 

In the adiabatic limit the total phase R of the eigenstate $" is the sum of the dynamical 
phase and the generalized Berry phase 

(3.12) 

When equations (3.5) and (3.11) are substituted into equation (3.12), we obtain 

e ( t )  = - ( n + + )  lo'df*w(t')r(tr). (3.13) 

The arbitrary function .(I) is chosen such that h,+fkq;=O, so that the total phase 
does not have any state-independent contribution. If there is no damping W =  I ) ,  
equation (3.13) gives the dynamical phase. 

4. Hamiltonian as the energy 

4.1. Hamiltonian 

If we assume that the Hamiltonian in equation (2.1) is the energy of the particle, we 
obtain a non-zero generalized Berry phase different from section 3. The Hamiltonian 
in equation (2.11 can he rewritten as 

H = 5-= ( 2 m r ) - ' ( p +  b q / a + g / n ) ' + f r L ( q - ~ ~ ) ' + I ; ,  (4.1) 
where io= h-g2/2a-fr&f;-is a function of time only and &=F/L .  The time- 
dependent 'spring constant' k is 

l = r ' ( c -  b 2 / a )  (4.2) 
and 

F = r- '(gb/a -f). (4.3) 

g$" =in$" (4.4) 

&q, I)= (b /2a)q2+(g/a)q+i ( t )  (4.5) 

The eigenvalue problem for 5- is 

where 6" is the eigenstate and 2. is the eigenvalue. Equaticn (4.4) can be immediately 
solved if we make a gauge transformation with the gauge function 

where i is an arbitrary function of time. Then the new operator 3 is 
@'=exp(id)g exp( - i ; l )= (2m~) - 'p~+fr~(q-~~) '+I ; , .  (4.6) 
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The new eigenstate 6; of the new operator In equation (4.6) IS 

The function &(q)  is the real eigenstate to the simple harmonic oscillator with &,=O 
in the Hamiltonian in equation (4 6). The eigenvalue in equation (4 4) IS 

6" = ( n + + ) i i + i o ( t )  (4.8) 

&,=exp(iL)& =&(q-&) .  (4.7) 

where the angular frequency G is 
;=(i/m)',> (4.9) 

and n =0,1,2,3, . . . 

4.2. Generalized geometncal phase 

The time derivative of the generalized Berry phase is [IO] 

$n(I)=(&l(iJ/Jt-H+ g&). (4.10) 

Since the energy operator is equal to the Hamiltonian in this case, equation (4 IO) 
reduces to 

k(1) = ( ~ b l ( J L i / J t ) * ' " ) + ( ~ I ~ i J / J f ) ~ b )  (4.11) 

with the use of equation (4.7). The last term on the right-hand side of equation (4.11) 
is zero, because it is imth real, from equation (4.71, and imaginary from the cormaliz- 
ation condition. If equation (4.5) for the gauge function is substituted into equation 
(4.11). we obtain 

(4.12) 

which has a state-dependent part and an arbitrary state-independent part. The state- 
dependent pan of the generalized Berry phase ir. equation (4 12) is different from the 
state-dependent part of the generalized Berry phase in equacion (3.11). 

qm( r )  = i[d(b/a)/dt](a/i)(n +f)+ ;+ io d(g/a)/dt 

4.3. Total phase 

In the adiabatic limit the total phase 6 of the ergenstate Gn is the sum of the dynamical 
phase and the generalized Berry phase: 

6( t )  = - dt' &(t ' )  + f m ( t ) .  (4.13) lo' 
When equations (4.8) and (4.12) are substituted into equation (4.13). we obtain 

e'( f ) = -( n + $) jo' d 1 '[ ii( 1') -$(a/ & ) d( b/ a )/d 1'1. (4.14) 

The arbitrary function i is chosen to be ;= io-&d(g/a)/dt, so that equation (4.14) 
has no state-independent contribution. 

5. Discussion 

In this section a comparison of the energies and total phases ir. seqjons 3 and 4 is 
--ad:. C.: uxe.tci:'."t;. pri,r;.ncip!e is .!so disc~ssed. 

\ _  
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5.1. Energy 

The time denvative of the energy W in equation (2.9) is the power in equation ( 2  11) 
transferred between the system and its environment. Each term in equation (2.1 1)  has 
a physical significance 

On the other hand, if the 'energy' is chosen to be the Hamiltonian H in equation 
[2.1), then the time denvative of 8 in equation (4.1) IS 

d g / d t  = d H / d t  = 2H/J t=  $(npZ+2bpq+ Cq') +fq+gp + h (5.1) 

from Hamilton's equations (2.2) and (2.3). If the canonical momentum p is eliminated 
from equation (5.1) in terms of the velocity q using equation (2 21, we obtain 

d@/d t  = -f[d( mr) /d t1q2+t [d (TA) /dr ]q ' -  [d(rE)/dt]q + [d(b/n)/dr]qq 

-[d(g!al/dfjq+d(h -gz/2a)/dr ( 5  2) 

The six terms on the right-band side of equation (5.2) cannot he interpreted physically 
as power, in contrast toohe five terms on the right-hand side of equation (2.11). We 
can thus conclude that E in equation (4.1) is not the energy of the system, hut 8 in 
equation (2.9) is. 

The difference between the energy E in equation (2.9) and r-'g in equation 
(4.1) i s  

(5.3) g--ps=i ._ A ) q * - ( F - F ) q - r - ' ( h  -g2 /Za )  

In general, the nght-hand side of equ:u-tion (5.3) does not vanish and g is not the energy. 

5.2. Total phase 

The total phases in the adiabatic limit for the two cases considered are given in 
equations (3.13) and (4.14). In the adiabatic limit we now show that these two phases 
are equal. 

The phase O ( t )  in equation (3.13) can he written as 

8 ( t )  = - ( n + i )  j0 'dt r [& ' -a  d(b/a)/dt']"2 (5.4) 

from equations (3.6), (2.4), (2.7). (4.2) and (4.9). In the adiabatic limit, the derivative 
in equation (5 4) is small, and we can expand the square root, which gives 

If the expansion is terminated after th: second term, equation (5.5) agrees with (4.14), 
2" L.LC ,W" p"1a'C" a,= cqua,. v,.,- v,,,. 111.3 Uc-LlaYLUuI IS an snaarprr: U, a galera, 
theorem [lo]. 

Even though the total phases in sections 3 and 4 are the same in the adiabatic limit, 
the dynamical and Berry phases are different. The energies of a system can be 
determined from spectroscopic measurements, and the dynamical phase can be calcu- 
lated. The dynamical phase in section 3 is Correct, because the correct energy operator 
is used. An interference experiment would measure the total relative phase. The Berry 
phase can be obtained by subtracting the dynamical phase from the total phase. Because 
the correct energy is used, the Berry phase obtained in section 3 is correct. 

"_ *La .... ̂ ..L"""" "-- a,*,- a,., -:- L^L.. i  :. .- .. ^C - -.-..- 8 
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5.3. Uncertainty principle 

For a system which is canonically quantized, the uncertainty principle is 

ApAqa h/2  (5.6) 
in terms of the uncertainties in the canonical momentum A~=( (p - (p ) ) ' ) ' ' ~  and the 
coordinate Aq = ((4 - (q j )2 )"2 .  For the damped harmonic oscillator, the uncertainty 
principle in terms of the kinetic momentum mu = mq from equation (2 2) is 

where equations (2.4) and (2.5) have been used. 
The Kanai Hamiltonian 1211, for which y lm>O is a constant in equation (5.7), 

has been criticized [23] for allegedly violating the uncertainty principle. However, the 
uncertainty principle in terms of the canonical momentum p in equation (5.6) is always 
satisfied. Nevertheless, some workers [23] believe on physical grounds that the uncer- 
tainty principle should also be satisfied in terms of the kinetic momentum. When 
y l m  >O, the right-hand side of equation (5.7) goes to zero as the time goes to infinity. 
This behaviow is due to the model considered, in which the quantum harmonic 
oscillator is coupled to a reservoir which always removes energy, including the zero 
point energy as equations (3.5) and (3.6) show. The quantum harmonic oscillator 
behaves more classically as the time increases. 

In the model considered here the 'constant' y(t) depends, in general, on time. It 
can be positive, corresponding to friction, or negative, corresponding to aiitifriction. 
If the integral in equation (5.7) satisfies 

for all times 1, the right-hand side of equation (5.7) is always greater than or equal to 
h/2, and hence the uncertainty principle in terms of the kinetic momentum AmvAq z 
h/2 is always satisfied. The harmonic oscillator with the condition in equation ( 5  8) 
gives a phenomenological descnption of a quantum oscillator which is coupled to a 
quantum system of many degrees of freedom [24] which can supply energy to :he 
particle as well as remove energy from it. When the reservoir is removing energy from 
the particle y >  0 and when the reservoir is supplying energyto the particle y<O. The 
model given here does not determine y ( r )  hut nierely treats it as a phenomenological 
function, This approach is a natural generalization of Kanai's Hamiltonian, which 
removes a major objection [231. 

6. Conclusion 

The most general time-dependent Hamiltonian for the harmonic oscillator is both 
linear and quadratic in the coordinate and canonical momentum. It describes a 
harmonic oscillator with a tlme-dependent mass, a time-dependent friction (or antifric- 
tion) 'constant', and a time-dependent spring 'constant', which i s  acted upon by a 
time-dependent force. The time-dependent mass and the time-dependent friction con- 
stant must be given to determine the physical system, since the Hamiltonian alone 
does not do it. The energy, defined such that its time derivative is equal to the power 
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transferred between the system and the environment, is not in general equal to the 
HamiitoNan. 

When the system is canonically quantized, its generalized Berry phase, calcuiated 
foreigenstates of the energy operator, consists of a state-dependent pan and an arbitrary 
state-independent part. The state-independent pan is chosen to cancel the state- 
iqdependent part of the dynamical phase in the adiabatic limit. The state-independent 
pan of the Berry phase is equivalent to a time-dependent gauge function, so it has no 
observable consequences, contrary to a recent claim 1141. The state-dependent part of 
the Berry phase contributes only if the system has frictional forces. 

If the Hamiltonian is identified (incorrectly) as the energy, the generalized Berry 
,phase has a different state-dependent part and an arbitrary state-independent part. 
The state-independent part of the Berry phase can also be chosen to cancel the 
state-independent part of the dynamical phase. In the adiabatic limit the total phases 
obtained from the two choices of energy are the same [IO]. Nevertheless, the dyximical 

dynamical phase can be calculated. It is therefore essential to use the correct energy 
operator for the problem. 

-h..--- "..A +ha Pa.--, -h"eec -.- AiSarmrrt  Qi-m rh.. ~n-m., r-n he n.aor..rsA the 
&...P"C" a,." ,..- " C L L J  &,..OL".," s... ...a.*. ..I.. "...I., I..* "..,.6y U'... "I ... UPaUL-", .LL* 
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